36 research outputs found

    The role of tumorsuppressor gene mutations in B-cell non-Hodgkin lymphomas

    Get PDF
    Die vorliegende Arbeit verwendet 250k-Affymetrix-SNP-Chips zur Untersuchung von 39 molekularen Burkitt-Lymphomen und 148 diffus-großzelligen-B-Zell-Lymphomen aus dem Kollektiv des Verbundsprojekts der deutschen Krebshilfe „Molekulare Mechanismen maligner Lymphome“(MMML). Die Analyse der Burkitt-Lymphome bestĂ€tigte die hohe Signifikanz der MYC-Deregulation in diesem Lymphom. Viele Verluste und Zugewinne von genomischem Material betraffen Gene mit funtionellen Verbindungen zum MYC-Signal. ZusĂ€tzlich zeigten Genexpressionsdaten aus dem MMML-Verbund, dass viele genomischen KopienzahlverĂ€nderungen zu einem Gendosiseffekt fĂŒhren, der ebenfalls pathogenetische Relavanz besitzen könnte. Die genetischen VerĂ€nderungen der diffus-großzelligen B-Zell-Lymphome zeigten viele Kandidatengene auf, die eine Rolle in der Pathogenese dieser Krankheit spielen könnten. Mit Hilfe der verfĂŒgbaren Genexpressionsdaten konnte die Kandidatenliste weiter eingeschrĂ€nkt werden, zusĂ€tzlich zur Unterteilung der Lymphome nach Subtypen, um nach gemeinsamen und distinkten Aberratioen in „aktivierten B-Zell-artigen“ und „Keimzentrums-B-Zell-artigen“ Lymphomen zu suchen. Diese Analysen detektierten TNFSF7 und TNFSF9 als mögliche haplo-insuffiziente Tumorsuppressorgene in beiden Lymphomtypen. Weiterhin konnte die Charakterisierung einer neuartigen Translokation zwischen MYC und SOCS1 in einem Einzelfall des Kollektivs weitere Einsichten in die Deregulierungen liefern, die zu einem malignen Zellklon fĂŒhren.Employing the collection of the “molecular mechanisms in malignant lymphoma” (MMML) project of the german cancer aid, the present work utilised high-resolution 250k Affymetrix SNP-chips on 39 molecular Burkitt-lymphomas and 148 diffuse large B-cell lymphomas. The analysis of the Burkitt-lymphomas confirmed the high significance of the MYC-deregulation in this lymphoma. Many losses and gains of genomic material contained genes that have funtional links to the MYC-signal. In addition, gene expression data from the MMML-project proved that many genomic copy number changes lead to a gene dosis effect that could have pathogenetic relevance. The genetic changes in the diffuse large B-cell lymphomas revealed many candidate genes that could play a role in the pathogenesis of the disease. The available gene expression data allowed to further narrow down these lists of candidates, in addition to the partition of the available lymphomas into subtypes to look for shared and distinct aberrations in the “activated B-cell like”- or “germinal center B-cell like”-groups. These analyses detected TNFSF7 and TNFSF9 as possible haplo-insufficient tumor suppressor genes in both types of lymphomas. Furthermore, the characterization of a novel translocation between MYC and SOCS1 in a single case of the collective provided further insight into the deregulations that lead to a malignant cell clone

    Whole exome sequencing of microdissected splenic marginal zone lymphoma: a study to discover novel tumor-specific mutations

    Get PDF
    BACKGROUND: Splenic marginal zone lymphoma (SMZL) is an indolent B-cell non-Hodgkin lymphoma and represents the most common primary malignancy of the spleen. Its precise molecular pathogenesis is still unknown and specific molecular markers for diagnosis or possible targets for causal therapies are lacking. METHODS: We performed whole exome sequencing (WES) and copy number analysis from laser-microdissected tumor cells of two primary SMZL discovery cases. Selected somatic single nucleotide variants (SNVs) were analyzed using pyrosequencing and Sanger sequencing in an independent validation cohort. RESULTS: Overall, 25 nonsynonymous somatic SNVs were identified, including known mutations in the NOTCH2 and MYD88 genes. Twenty-three of the mutations have not been associated with SMZL before. Many of these seem to be subclonal. Screening of 24 additional SMZL for mutations at the same positions found mutated in the WES approach revealed no recurrence of mutations for ZNF608 and PDE10A, whereas the MYD88 L265P missense mutation was identified in 15 % of cases. An analysis of the NOTCH2 PEST domain and the whole coding region of the transcription factor SMYD1 in eight cases identified no additional case with a NOTCH2 mutation, but two additional cases with SMYD1 alterations. CONCLUSIONS: In this first WES approach from microdissected SMZL tissue we confirmed known mutations and discovered new somatic variants. Recurrence of MYD88 mutations in SMZL was validated, but NOTCH2 PEST domain mutations were relatively rare (10 % of cases). Recurrent mutations in the transcription factor SMYD1 have not been described in SMZL before and warrant further investigatio

    a study to discover novel tumor-specific mutations

    Get PDF
    Background Splenic marginal zone lymphoma (SMZL) is an indolent B-cell non- Hodgkin lymphoma and represents the most common primary malignancy of the spleen. Its precise molecular pathogenesis is still unknown and specific molecular markers for diagnosis or possible targets for causal therapies are lacking. Methods We performed whole exome sequencing (WES) and copy number analysis from laser-microdissected tumor cells of two primary SMZL discovery cases. Selected somatic single nucleotide variants (SNVs) were analyzed using pyrosequencing and Sanger sequencing in an independent validation cohort. Results Overall, 25 nonsynonymous somatic SNVs were identified, including known mutations in the NOTCH2 and MYD88 genes. Twenty-three of the mutations have not been associated with SMZL before. Many of these seem to be subclonal. Screening of 24 additional SMZL for mutations at the same positions found mutated in the WES approach revealed no recurrence of mutations for ZNF608 and PDE10A, whereas the MYD88 L265P missense mutation was identified in 15 % of cases. An analysis of the NOTCH2 PEST domain and the whole coding region of the transcription factor SMYD1 in eight cases identified no additional case with a NOTCH2 mutation, but two additional cases with SMYD1 alterations. Conclusions In this first WES approach from microdissected SMZL tissue we confirmed known mutations and discovered new somatic variants. Recurrence of MYD88 mutations in SMZL was validated, but NOTCH2 PEST domain mutations were relatively rare (10 % of cases). Recurrent mutations in the transcription factor SMYD1 have not been described in SMZL before and warrant further investigation

    Depletion of Foxp3(+) regulatory T cells is accompanied by an increase in the relative abundance of Firmicutes in the murine gut microbiome

    Get PDF
    A reciprocal interaction exists between the gut microbiota and the immune system. Regulatory T (Treg) cells are important for controlling immune responses and for maintaining the intestinal homeostasis but their precise influence on the gut microbiota is unclear. We studied the effects of Treg cell depletion on inflammation of the intestinal mucosa and analysed the gut microbiota before and after depletion of Treg cells using the DEpletion of REGulatory T cells (DEREG) mouse model. DNA was extracted from stool samples of DEREG mice and wild‐type littermates at different time‐points before and after diphtheria toxin application to deplete Treg cells in DEREG mice. The V3/V4 region of the 16S rRNA gene was used for studying the gut microbiota with Illumina MiSeq paired ends sequencing. Multidimensional scaling separated the majority of gut microbiota samples from late time‐points after Treg cell depletion in DEREG mice from samples of early time‐points before Treg cell depletion in these mice and from gut microbiota samples of wild‐type mice. Treg cell depletion in DEREG mice was accompanied by an increase in the relative abundance of the phylum Firmicutes and by intestinal inflammation in DEREG mice 20 days after Treg cell depletion, indicating that Treg cells influence the gut microbiota composition. In addition, the variables cage, breeding and experiment number were associated with differences in the gut microbiota composition and these variables should be respected in murine studies

    Epigenetic Silencing of the Circadian Clock Gene CRY1 is Associated with an Indolent Clinical Course in Chronic Lymphocytic Leukemia

    Get PDF
    Disruption of circadian rhythm is believed to play a critical role in cancer development. Cryptochrome 1 (CRY1) is a core component of the mammalian circadian clock and we have previously shown its deregulated expression in a subgroup of patients with chronic lymphocytic leukemia (CLL). Using real-time RT-PCR in a cohort of 76 CLL patients and 35 normal blood donors we now demonstrate that differential CRY1 mRNA expression in high-risk (HR) CD38+/immunoglobulin variable heavy chain gene (IgVH) unmutated patients as compared to low-risk (LR) CD38−/IgVH mutated patients can be attributed to down-modulation of CRY1 in LR CLL cases. Analysis of the DNA methylation profile of the CRY1 promoter in a subgroup of 57 patients revealed that CRY1 expression in LR CLL cells is silenced by aberrant promoter CpG island hypermethylation. The methylation pattern of the CRY1 promoter proved to have high prognostic impact in CLL where aberrant promoter methylation predicted a favourable outcome. CRY1 mRNA transcript levels did not change over time in the majority of patients where sequential samples were available for analysis. We also compared the CRY1 expression in CLL with other lymphoid malignancies and observed epigenetic silencing of CRY1 in a patient with B cell acute lymphoblastic leukemia (B-ALL)

    Capsule-dependent impact of MAPK signalling on host cell invasion and immune response during infection of the choroid plexus epithelium by Neisseria meningitidis

    No full text
    Background!#!The Gram-negative bacterium Neisseria meningitidis (Nm) can cause meningitis in humans, but the host signalling pathways manipulated by Nm during central nervous system (CNS) entry are not completely understood.!##!Methods!#!We investigate the role of the mitogen-activated protein kinases (MAPK) Erk1/2 and p38 in an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with Nm serogroup B (NmB) and serogroup C (NmC) strains. A transcriptome analysis of HIBCPP cells following infection with Nm by massive analysis of cDNA ends (MACE) was done to further characterize the cellular response to infection of the barrier.!##!Results!#!Interestingly, whereas NmB and NmC wild type strains required active Erk1/2 and p38 pathways for infection, invasion by capsule-deficient mutants was independent of Erk1/2 and, in case of the NmB strain, of p38 activity. The transcriptome analysis of HIBCPP cells following infection with Nm demonstrated specific regulation of genes involved in the immune response dependent on Erk1/2 signalling. Gene ontology (GO) analysis confirmed loss of MAPK signalling after Erk1/2 inhibition and revealed an additional reduction of cellular responses including NFÎșB and JAK-STAT signalling. Interestingly, GO terms related to TNF signalling and production of IL6 were lost specifically following Erk1/2 inhibition during infection with wild type Nm, which correlated with the reduced infection rates by the wild type in absence of Erk1/2 signalling.!##!Conclusion!#!Our data point towards a role of MAPK signalling during infection of the CP epithelium by Nm, which is strongly influenced by capsule expression, and affects infection rates as well as the host cell response

    SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy with a median survival of the patients of less than two years. Besides characteristic chromosomal translocations, frequent mutations affect the ATM gene, JAK/STAT pathway members, and epigenetic regulators. We here performed a targeted mutation analysis for 40 genes selected from a RNA sequencing of 10 T-PLL in a collection of 28 T-PLL, and an exome analysis of five further cases. Nonsynonymous mutations were identified in 30 of the 40 genes, 18 being recurrently mutated. We identified recurrently mutated genes previously unknown to be mutated in T-PLL, which are SAMHD1, HERC1, HERC2, PRDM2, PARP10, PTPRC, and FOXP1. SAMHD1 regulates cellular deoxynucleotide levels and acts as a potential tumor suppressor in other leukemias. We observed destructive mutations in 18% of cases as well as deletions in two further cases. Taken together, we identified additional genes involved in JAK/STAT signaling (PTPRC), epigenetic regulation (PRDM2), or DNA damage repair (SAMHD1, PARP10, HERC1, and HERC2) as being recurrently mutated in T-PLL. Thus, our study considerably extends the picture of pathways involved in molecular pathogenesis of T-PLL and identifies the tumor suppressor gene SAMHD1 with ~20% of T-PLL affected by destructive lesions likely as major player in T-PLL pathogenesis

    Mitochondrial Kv1.3 Channels as Target for Treatment of Multiple Myeloma

    Get PDF
    Despite several new developments in the treatment of multiple myeloma, all available therapies are only palliative without curative potential and all patients ultimately relapse. Thus, novel therapeutic options are urgently required to prolong survival of or to even cure myeloma. Here, we show that multiple myeloma cells express the potassium channel Kv1.3 in their mitochondria. The mitochondrial Kv1.3 inhibitors PAPTP and PCARBTP are efficient against two tested human multiple myeloma cell lines (L-363 and RPMI-8226) and against ex vivo cultured, patient-derived myeloma cells, while healthy bone marrow cells are spared from toxicity. Cell death after treatment with PAPTP and PCARBTP occurs via the mitochondrial apoptotic pathway. In addition, we identify up-regulation of the multidrug resistance pump MDR-1 as the main potential resistance mechanism. Combination with ABT-199 (venetoclax), an inhibitor of Bcl2, has a synergistic effect, suggesting that mitochondrial Kv1.3 inhibitors could potentially be used as combination partner to venetoclax, even in the treatment of t(11;14) negative multiple myeloma, which represent the major part of cases and are rather resistant to venetoclax alone. We thus identify mitochondrial Kv1.3 channels as druggable targets against multiple myeloma

    Stool and sputum microbiome during quinolone prophylaxis of spontaneous bacterial peritonitis: an exploratory study

    No full text
    Introduction: Quinolone prophylaxis is recommended for patients with advanced cirrhosis at high risk of spontaneous bacterial peritonitis (SBP) or with prior SBP. Yet, the impact of long-term antibiotic prophylaxis on the microbiome of these patients is poorly characterized. Methods: Patients with liver cirrhosis receiving long-term quinolone prophylaxis to prevent SBP were prospectively included and sputum and stool samples were obtained at baseline, 1, 4 and 12 weeks thereafter. Both bacterial DNA and RNA were assessed with 16S rRNA sequencing. Relative abundance, alpha and beta diversity were calculated and correlated with clinical outcome. Results: Overall, 35 stool and 19 sputum samples were obtained from 11 patients. Two patients died (day 9 and 12) all others were followed for 180 days. Reduction of Shannon diversity and bacterial richness was insignificant after initiation of quinolone prophylaxis (p > 0.05). Gut microbiota were significantly different between patients (p  0.05). A high relative abundance of Enterobacteriaceae > 20% during quinolone prophylaxis was found in three patients. Specific clinical scenarios (development of secondary infections during antibiotic prophylaxis or the detection of multidrug-resistant Enterobacteriaceae) characterized these patients. Sputum microbiota were not significantly altered in individuals during prophylaxis. Conclusion: The present exploratory study with small sample size showed that inter-individual differences in diversity of gut microbiota were high at baseline, yet quinolone prophylaxis had only a moderate impact. High relative abundances of Enterobacteriaceae during follow-up might indicate failure of or non-adherence to quinolone prophylaxis. However, our results may not be clinically significant given the limitations of the study and therefore future studies are needed to further investigate this phenomenon

    Mitochondrial Kv1.3 Channels as Target for Treatment of Multiple Myeloma

    No full text
    Simple Summary Multiple myeloma is a non-curable disease and new therapeutic approaches are needed. PAPTP and PCARBTP, two novel mitochondria-specific inhibitors of the Kv1.3 ion channel, are effective in killing cultured myeloma cell lines and myeloma cells isolated from patient punctates, while healthy bone marrow cells are not affected. Cell death occurs through the classical mitochondrial apoptotic pathway, and further treatment with venetoclax, a BCL-2 inhibitor, has a clear synergistic effect. We identify Kv1.3 channels as a new therapeutic target for the treatment of multiple myeloma. Despite several new developments in the treatment of multiple myeloma, all available therapies are only palliative without curative potential and all patients ultimately relapse. Thus, novel therapeutic options are urgently required to prolong survival of or to even cure myeloma. Here, we show that multiple myeloma cells express the potassium channel Kv1.3 in their mitochondria. The mitochondrial Kv1.3 inhibitors PAPTP and PCARBTP are efficient against two tested human multiple myeloma cell lines (L-363 and RPMI-8226) and against ex vivo cultured, patient-derived myeloma cells, while healthy bone marrow cells are spared from toxicity. Cell death after treatment with PAPTP and PCARBTP occurs via the mitochondrial apoptotic pathway. In addition, we identify up-regulation of the multidrug resistance pump MDR-1 as the main potential resistance mechanism. Combination with ABT-199 (venetoclax), an inhibitor of Bcl2, has a synergistic effect, suggesting that mitochondrial Kv1.3 inhibitors could potentially be used as combination partner to venetoclax, even in the treatment of t(11;14) negative multiple myeloma, which represent the major part of cases and are rather resistant to venetoclax alone. We thus identify mitochondrial Kv1.3 channels as druggable targets against multiple myeloma
    corecore